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2. 4𝑦
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𝑦1 − 𝑦2

 (
1
)𝑚1 = 𝑥

− 𝑥2

11 − 15
=
1 − 2
= 4
𝑦3 − 𝑦4

 (
3
)𝑚2 = 𝑥

− 𝑥4

19 − 23
=
3 − 4
= 4

 (
𝑦
 
=
4𝑥
)

𝑦 = 𝑚𝑥 + 𝑐
 (
𝑚
 
=
 
4
)

𝑦 = 4𝑥 + 𝑐
𝑦 = 43, 𝑥 = 9
43 = 4(9) + 𝑐
𝑐 = 43 − 36
𝑐 = 7

 (
124
85
54
31
)
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𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐
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)

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

16 = 𝑎 + 𝑏 + 𝑐
54 = 𝑎(9) + 𝑏(3) + 𝑐
360 = 𝑎(81) + 𝑏(9) + 𝑐
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𝑎 = 16 − 𝑏 − 𝑐

T


54 = (16 − 𝑏 − 𝑐)(9) + 𝑏(3) + 𝑐
54 = 144 − 9𝑏 − 9𝑐 + 3𝑏 + 𝑐
54 = 144 − 6𝑏 − 8𝑐
−90 + 6𝑏 = −8𝑐 90 − 6𝑏
𝑐 =
8




𝑎 = 16 − 𝑏 −


90 − 6𝑏


8




8𝑎 = 128 − 8𝑏 − 90 + 6𝑏
8𝑎 = 38 − 2𝑏
38 − 2𝑏
𝑎 =
8





38 − 2𝑏
360 = 81 (
8


) + 9𝑏 +

90 − 6𝑏


8

 (
𝑦
 
=
 
3𝑥
2
 
−
 
3𝑥
 
+
 
7
)



2880 = 81(38 − 2𝑏) + 72𝑏 + 90 − 6𝑏
2880 = 3078 − 162𝑏 + 72𝑏 + 90 − 6𝑏
2880 = 3168 − 96𝑏
−288 = −96𝑏
𝑏 = 3


𝑦 = 4𝑥2 + 3𝑥 + 9
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1.4.2.1 The Cartesian plane
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 (
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=
) (
2
𝑥
2
−1
)[image: ]𝑦 = 3𝑥3 + 2𝑥 + 1
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1.4.2.3 x- and y-intercepts

𝑦 = 3𝑥3 + 2𝑥 + 1
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𝑦 = 3𝑥 + 7

𝑦 = 9𝑥 + 7 𝑦 = 𝑥2 + 5𝑥 + 6 𝑦 =   2    + 3
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−
 
9
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0 = 𝑥2 + 5𝑥 + 6
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𝑥 =

−𝑏 ± √𝑏2 − 4𝑎𝑐


2𝑎


[image: ]𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.


,	0 = 𝑥2 + 5𝑥 + 6 [image: ]


𝑥 = −5+√(5)2−4(1)(6) = −2 and 𝑥 = −5−√(5)2−4(1)(6) = −3.
2(1)	2(1)
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+ 3:
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2
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−3 =

2


𝑥 − 1

−3(𝑥 − 1) = 2
−3𝑥 + 3 = 2
−3𝑥 = −1
1

𝑥 =
3
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−7 = 3𝑥
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[image: ]𝑦 = 9𝑥 + 7.

𝑦 = 9(0) + 7
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[image: ]𝑦 = 𝑥2 + 5𝑥 + 6. [image: ]x=0:
𝑦 = (0)2 + 5(0) + 6
𝑦 = 6




𝑦 =



2
+ 3
0 − 1

𝑦 =   2
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+ 3	x=0:

𝑦 = −2 + 3
𝑦 = 1
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𝑦 = 30 + 7
𝑦 = 1 + 7
𝑦 = 8
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1.5.1.1 𝒚 = 𝒂𝒙 + 𝒃
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1.5.1.2 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄
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